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CHAPTER 1.  INTRODUCTION 

Of the over 9 million hybrid electric vehicles on the road worldwide today, most are 

powered primarily by nickel-metal hydride (Ni/MH) batteries.  They offer excellent power 

performance under demanding conditions, operating reliably and safely upwards of 8-10 years 

through the cycles of summers and winters.  They are also attractive for advanced start-stop 

applications, which hold incredible market potential with the increasing pressure from stricter 

government regulations worldwide to reduce fuel consumption and emissions in vehicles.  

Hybrid Ni/MH-lead-acid start-stop systems can extend service life to the lead-acid battery while 

boosting the vehicle’s fuel economy [1].  Cost is also a major consideration factor for consumer 

vehicles, and rare-earth-free AB2 Laves phase-based negative electrode active materials offer 

good electrochemical performance that can be tailored to specific applications at low cost 

potentials. 

There are three major types of metal hydride (MH) alloys used in Ni/MH negative 

electrode active materials: AB5, AB2, and A2B7 alloys.  Comparatively, AB2 MH alloys have 

higher storage capacities and lower raw material costs but with tradeoffs to activation, high-rate 

dischargeability (HRD), and cycle durability [2].  However, the multi-phased nature of AB2 

Laves-phase-based MH alloys has enabled a dramatic increase in electrochemical performance in 

Ni/MH batteries, particularly with the inclusion of Zr-Ni-based secondary phases [3, 4].  The 

flexibility in chemical compositions, additives, and processing methods for AB2 Laves-phase-

based MH alloys and their effect on the structure and phase abundance characteristics have direct 

effects on electrochemical performance of these active materials to enable better activation, low-

temperature performance, high-rate dischargeability (HRD), and cycle durability, through 

research and materials engineering [5]. 
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Zr7Ni10 is an important secondary phase found in multi-phased AB2 Laves-phase-based 

MH alloys, and the synergetic effect between the Zr-Ni and the Laves phases allows access to 

the high hydrogen storage of the Zr-Ni phases despite the lower absorption/desorption kinetics [3, 

4, 6, 7].  Zr2Ni7, on the other hand, has excellent absorption/desorption kinetics but poor 

hydrogen storage capacity [8]. Zr7Ni10 shows solubility with Zr-rich stoichiometries, while 

Zr2Ni7 shows no solubility window. Stability of point defects within the crystal structure allows 

Zr7Ni10 to maintain the same structure at off-stoichiometric compositions, thus it is theorized that 

defects may play a role in the difference between the electrochemical behaviors in Zr7Ni10 and 

Zr2Ni7. Defects such as vacancies can act to trap hydrogen and inhibit the transport of hydrogen 

through the alloy [9].  Defects such as anti-sites can promote lower atomic packing ratios, which 

can improve cycling capability due to a higher propensity to deform rather than to crack [10, 11].  

The ability to tune the ratio between hydride formers such as Zr and hydride modifiers such as 

Ni as well as to add other modifiers while maintaining the structure of the alloys is an important 

feature for designing battery materials targeting a specific application, and can strongly affect 

battery performance properties [5, 12-14].   

The structure Zr7Ni10 and its solubility window on the Zr-Ni binary phase diagram has 

been revised over the years and is a subject of contention [15-20].  First-principle calculations 

offer a theoretical method to evaluate the structure and study the defect models in these materials 

[21-24]. Defect models in Zr7Ni10 and Zr2Ni7 computed using a combination of density 

functional theory (DFT) and statistical mechanics offer a starting point for understanding the 

nature of the Zr7Ni10 secondary phases and their defects in Ni/MH batteries.   
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1.1 Objectives 

This study has three major objectives in order to better understand the structure of 

constitutional defects in Zr7Ni10 and Zr2Ni7 and how the defects may affect electrochemical 

performance in Ni/MH batteries: 

1. To determine the ground state structure of Zr7Ni10 by first principle calculations 

via DFT and confirm the structures found in experiment. 

2. To determine the DFT formation energies of the compounds of interest, their 

defects, and of neighboring compounds to understand the relative ground state 

stability of the components at play in the Zr-Ni system at the compositions of 

interest. 

3. To determine the relative constitutional defect concentrations and effective defect 

formation energies using a statistical mechanics model to preserve the overall 

alloy composition in Zr7Ni10 and Zr2Ni7 compounds for stoichiometric and off-

stoichiometric cases. 
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CHAPTER 2.  BACKGROUND AND THEORY 

2.1 Zr-Ni Binary Alloy System 

The Zr-Ni binary phase diagram illustrates the different thermodynamically stable Zr-Ni 

phases that can form for a given composition of Zr and Ni at a specific temperature, and it is 

shown below in Figure 1.  Zr7Ni10 phase has an A/B stoichiometry ratio of 0.7, equivalent to 

41.2% at. Zr.  Studies originally showed Zr7Ni10 phase with a solubility range that is 

hyperstoichiometric in Zr up to ~44% at. [18], but subsequent studies show a solubility range up 

to 41.5% at. maximum [19].  Phases such as Zr2Ni7 are “line compounds” and show no range in 

solubility.   

 

Figure 1. Zr-Ni binary phase diagram [20] 

 

While processing methods, quenching techniques, and annealing methods can be used to 

obtain different phase mixtures for a given atomic composition, annealing at high temperature 

for a long period of time should yield the equilibrium phase or phases predicted by the binary 
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phase diagram.  For example, off-stoichiometric ratios of Zr and Ni around 22.2% at. Zr melted 

together preferably forms a mixture of stoichiometric Zr2Ni7 and ZrNi5 (if hypostoichiometric) or 

ZrNi3 (if hyperstoichiometric) at equilibrium.  It is the equilibrium structures that are of interest 

in this study. 

The Zr-Ni system holds particular interest due to the role that Zr-Ni secondary phase 

plays in Laves phase-based electrodes used in Ni/MH batteries.  Laves phase-based electrodes 

show good electrochemical capacity and offer a low cost alternative to expensive rare earth 

metal-based electrodes.  While Zr7Ni10 phase on its own performs relatively poorly, as a 

secondary phase, Zr7Ni10 improves the surface transfer characteristics to provide a synergetic 

effect with the main Laves phase [3].  Zr7Ni10 phase also has hydrogen storage capability in the 

electrodes, and further improvement in Zr7Ni10 phase can boost the overall performance in Laves 

phase-based Ni/MH electrodes. 

 

2.2 Defect Chemistry 

Defects in crystalline materials fall under three major categories: point, linear, and planar 

defects [25].  Point defects are also known as constitutional defects.   They are distributed 

throughout the bulk of the crystal and can exist at thermal equilibrium where linear and planar 

defects would be thermodynamically unstable [26].  Point defects can have a major effect on the 

thermodynamic, transport, and mechanical properties of materials, such as phase transition, 

diffusion, conductivity, plasticity, creep, and susceptibility to hydrogen embrittlement [9, 10, 21, 

27]. The different types of point defects are the subject of study for Zr7Ni10 and Zr2Ni7 

compounds. 
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2.2.1 Point Defects in Binary Ordered Compounds 

Zr7Ni10 and Zr2Ni7 are binary, ordered intermetallic compounds with a specific structure 

and an ideal stoichiometry.  Four major types of point defects are considered in this study: 

1. Vacancies where normally a Ni atom occurs. 

2. Vacancies where normally a Zr atom occurs. 

3. Anti-site substitutions of a Zr atom where normally a Ni atom occurs. 

4. Anti-site substitutions of a Ni atom where normally a Zr atom occurs. 

Due to the size of the Zr and Ni atoms, interstitial defects, where an atom sits in a site where a 

vacancy normally occurs, are not considered in this study.  Dumbbell interstitials, which can 

occur in alloys with Ni or Cu atoms [28, 29], are also neglected for the purposes of the model. 

In a monatomic crystal, the energy of formation for point defects such as vacancies can 

be described as 

∆𝐻𝑣 = 𝐸(𝑁 − 1) −
𝑁 − 1

𝑁
𝐸(𝑁) , 

where ∆𝐻𝑣  is the energy of formation of a vacancy defect, 𝐸(𝑁) is the energy of the perfect 

crystal with N atoms, and 𝐸(𝑁 − 1) is the energy of the crystal with one vacancy defect [21].  

These energies can be computed by DFT.  Calculations using larger supercells reduce the 

interaction of the defects between adjacent cells and become more accurate. 

The DFT model breaks down for non-monatomic systems such as the Zr7Ni10 and Zr2Ni7 

systems.  Defect concentrations are temperature dependent, and increases to vacancy defects in a 

monatomic crystal does not change its composition.  However, a Zr vacancy in ZrNi phase, for 

example, either generates an accompanying Ni vacancy or a Zr→Ni anti-site with a second Zr 

vacancy in order to maintain the 1:1 stoichiometry necessary for the phase.  Other 

stoichiometries have different ratios of defects needed to maintain the stoichiometry.  A 



www.manaraa.com

7 

 

 

statistical mechanics model that uses energy parameters calculated by DFT can describe the 

distribution of point defects in binary ordered compounds and the effective energies for the 

defects to form. 

 

2.3 Density Functional Theory 

Density functional theory (DFT) has enabled the modeling of materials and their 

properties using quantum mechanical calculations with reasonable accuracy and speed.  DFT 

takes the problem of many-body systems and maps its properties to a functional of the system’s 

ground state density.  The ground state density is a scalar function of position, and an 

approximate solution to the Schrödinger equation can be obtained for large many-bodied systems 

where direct numerical solutions involving the many-bodied wavefunction would be too 

resource-consuming to solve.  Ref. [30] and [31] are excellent resources for understanding the 

background and theory behind computational chemistry and DFT, and this section relies on these 

two resources as well as the original journal sources for describing how DFT fits in the scope of 

this work. 

 

2.3.1 Born-Oppenheimer Approximation 

The Hamiltonian describes the kinetic and potential energies between interacting 

electrons and nuclei within a system of interest. Taking into account the kinetic energies and all 

Coulomb interactions (electron-nuclei, electron-electron, and nuclei-nuclei) yields 

�̂� = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2

𝑖

+ ∑
𝑍𝐼𝑒2

|𝒓𝑖 − 𝑹𝐼|
𝑖,𝐼

+
1

2
∑

𝑒2

|𝒓𝑖 − 𝒓𝑗|
𝑖≠𝑗

− ∑
ℏ2

2𝑀𝐼
∇𝐼

2

𝐼

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑹𝐼 − 𝑹𝐽|
 ,

𝐼≠𝐽

 

where lower case symbols denote electrons and upper case symbols denote nuclei for position 

vector r, mass m, electronic charge e, and nuclear charge ZI [30]. The large difference in mass 
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between electrons and the nuclei leads to the Born-Oppenheimer approximation, in which the 

motion of the nuclei is essentially negligible compared to the motion of the electrons and the 

kinetic term for the nuclei can be largely ignored [32].  This simplifies the Hamiltonian, using 

Hartree atomic units, to 

�̂� = �̂� + �̂�𝑒𝑥𝑡 + �̂�𝑖𝑛𝑡 + 𝐸𝐼𝐼 , 

where �̂� is the kinetic energy operator for the electrons, 

�̂� = ∑ −
1

2
∇𝑖

2

𝑖

 , 

�̂�𝑒𝑥𝑡 is the external potential from the nuclei acting on the electrons, 

�̂�𝑒𝑥𝑡 = ∑ 𝑉𝐼(|𝒓𝑖 − 𝑹𝐼|)

𝑖,𝐼

 , 

�̂�𝑖𝑛𝑡 is the internal potential that arises from electron-electron interactions, 

�̂�𝑖𝑛𝑡 =
1

2
∑

1

|𝒓𝑖 − 𝒓𝑗|
𝑖≠𝑗

 , 

and EII is the interaction between nuclei.  The Born-Oppenheimer approximation allows the 

electronic motion to be separated from the atomic nuclei, which can now be viewed as an 

external potential acting on a collection of electrons.  

 

2.3.2 Schrödinger Equation 

The time-dependent Schrödinger equation governs the quantum state of a many-bodied 

system with respect to time by 

𝑖ℏ
𝜕

𝜕𝑡
Ψ = �̂�Ψ , 

where the Ψ is the wavefunction of the system [30].  Solutions of the time-independent 

Schrödinger equation 
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𝐸Ψ = �̂�Ψ , 

describe the wavefunctions that form stationary states (also known as “orbitals”) for the system.  

The proportionality constant when the Hamiltonian operator acts on one of the stationary states is 

the energy, E, of the state.  The total energy of the system is the expectation value of the 

Hamiltonian 

𝐸 =
〈Ψ|�̂�|Ψ〉

〈Ψ|Ψ〉
= 〈�̂�〉 = 〈�̂�〉 + 〈�̂�int〉 + ∫ d3𝑟 𝑉ext(𝒓) 𝑛(𝒓) + 𝐸𝐼𝐼 , 

where the expectation value of the external potential has been rewritten in terms of the electron 

density n.  The total energy of the system can be minimized to find the ground state 

wavefunction Ψ0 of the system.  It has an associated ground state density n0. 

 

2.3.3 Thomas-Fermi-Dirac Approximation 

Thomas and Fermi first used a functional of density to approximate the electronic kinetic 

energy while neglecting the electron exchange and correlation interactions.  Dirac included the 

exchange interactions in the energy functional 

𝐸TF[𝑛] = 𝐶1 ∫ d3𝑟 𝑛(𝒓)(5/3) + ∫ d3𝑟 𝑉ext(𝒓)𝑛(𝒓) + 𝐶2 ∫ d3𝑟 𝑛(𝒓)(4/3)

+
1

2
∫ d3𝑟d3𝑟′  

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
 , 

where C1 and C2 are known constants [30].  Minimizing the energy gives the ground state 

density and energy when subject to the constraint 

∫ d3𝑟 𝑛(𝒓) = 𝑁. 

The electron density can be viewed as the probability of finding electrons for a given 

space. For N indistinguishable electrons, the electron density is N times the probability of finding 
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an electron in the space.  Compared to the traditional 3N degrees of freedom for N electrons 

required to determine the ground state wavefunction to find the ground state energy, Thomas, 

Fermi and Dirac laid the groundwork for DFT, reducing the requirements to finding the ground 

state energy to N degrees of freedom.  However, their approximation considers the homogenous 

electron gas and oversimplifies aspects of inhomogeneous systems such as atoms and metals 

with impurities, which makes this method less useful for determining the electron structures 

needed to accurately model materials [33]. 

 

2.3.4 Hohenberg-Kohn Theorems 

The theorems developed by Hohenberg and Kohn allow for an exact approach to density 

functional theory that applies to any system of interacting particles subject to an external 

potential, particularly the system of electrons and fixed nuclei described in Section 2.3.1 from 

the Born-Oppenheimer approximation.  The theorems state [30, 33]: 

1. Two external potentials Vext(r) and V'ext(r) with the same ground state density n0 can 

only occur if V'ext(r) − Vext(r) = const, given that the ground states Ψ0 ≠ Ψ'0.   

Corollary: This theorem leads to the inconsistency that E + E' < E + E', which 

follows that the ground state density must uniquely determine the external potential 

(within a constant), thus determining all properties of the system. 

2. For any system of N particles and any external potential Vext(r), there exists a 

universal functional F[n] encompassing the kinetic and interaction energy such that 

𝐸[𝑛] ≡ 𝐹[𝑛] + ∫ d3𝑟 𝑉ext(𝒓)𝑛(𝒓).  E[n] is the global energy minimum, which is also 

the ground state energy, when n(r) is exactly n0(r), the ground state electron density. 
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Corollary: This theorem shows that if F[n] and the external potential are known, it is 

sufficient to determine the ground state energy and ground state density. 

By the Hohenberg-Kohn theorems, then: 

𝐸HK[𝑛] = 𝑇[𝑛] + 𝐸int[𝑛] + ∫ d3𝑟 𝑉ext(𝒓)𝑛(𝒓) + 𝐸𝐼𝐼 ≡ 𝐹HK[𝑛] + ∫ d3𝑟 𝑉ext(𝒓)𝑛(𝒓) + 𝐸𝐼𝐼 , 

where EHK = E, the exact energy of the system, and FHK[n] is the universal functional  

𝐹HK[𝑛] = 𝑇[𝑛] + 𝐸int[𝑛] , 

where T[n] is the kinetic energy functional and Eint[n] is the interaction energy functional.  While 

the Hohenberg-Kohn theorems provide an exact approach to density functional theory to 

obtaining the ground state energy and density, the exact functionals are not known except for in 

certain, limiting cases that do not describe actual electronic systems. 

 

2.3.5 Kohn-Sham Equations 

The contributions that Kohn and Sham have made to density functional theory along with 

the advances in computing technology have enabled the widespread use of electronic structure 

calculations for the modeling of materials today.  Their approach recasts the Hamiltonian that 

defines the many-bodied system into an auxiliary system that is more easily solved.  The 

auxiliary independent particle Hamiltonian is defined as  

�̂�aux
𝜎 = −

1

2
∇2 + 𝑉eff

𝜎 (𝒓) , 

which consists of a non-interacting kinetic energy term and 𝑉eff
𝜎 , an effective local potential 

acting on an electron with spin σ [30, 34].  This rewrites the Hohenberg-Kohn energy functional 

to 

𝐸KS[𝑛] = 𝑇s[𝑛] + ∫ d3𝑟 𝑉ext(𝒓)𝑛(𝒓) + 𝐸Hartree[𝑛] + 𝐸𝐼𝐼 + 𝐸xc[𝑛] , 
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where Ts is the non-interacting kinetic energy, EHartree is the interaction energy of the electron 

density interacting with itself  

𝐸Hartree[𝑛] =
1

2
∫ d3𝑟d3𝑟′

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
 , 

and Exc captures the remaining exchange and correlation energy from the interacting particles.  

Exc is thus defined as 

𝐸xc[𝑛] = 𝐹HK[𝑛] − (𝑇s[𝑛] + 𝐸Hartree[𝑛]) = 〈�̂�〉 − 𝑇s[𝑛] + 〈�̂�int〉 − 𝐸Hartree[𝑛] , 

which is the difference between the true kinetic and internal interaction energies of the 

interacting system with the energy of the independent, non-interacting system that has 

substituted the Hartree energy for the internal interaction energy.  The effective local Kohn-

Sham potential is finally defined as 

𝑉eff
𝜎 (𝒓) = 𝑉ext(𝒓) + 𝑉Hartree(𝒓) + 𝑉xc

𝜎(𝒓) . 

There is a tradeoff with the Kohn-Sham approach.  All of the terms are known exactly 

with the exception of Exc, which can be approximated.  However, obtaining Ts requires the 

treatment of orbitals rather than the density, which increases the degrees of freedom of the 

system back to 3N.  Approximation methods for Exc make the tradeoff acceptable in terms of 

increased accuracy for the resource usage. 

 

2.3.6 Exchange-Correlation Functionals 

The functionals for approximating Exc fall under three general classes: local density 

approximation (LDA), generalized gradient approximation (GGA) and hybrid functionals [30, 

31].  The LDA method uses the density of a uniform electron gas integrated over all space to 

approximate the exchange-correlation energy.  GGA methods improve upon the LDA method by 

incorporating the gradient of the density for each point in space, while requiring that the Fermi 
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and Coulomb hole properties be preserved.  Hybrid methods construct functionals from a 

combination of LDA/GGA exchange-correlation functionals with the exact exchange energy 

functional from Hartree-Fock theory.  Benchmarks for LDA and GGA methods show that GGA 

results (average absolute error 0.3 eV) improve bulk cohesive energy calculations over LDA 

results (average absolute error 1.3 eV) due to the underestimation of the exchange energy in the 

LDA [35].  Popular and successful GGA functionals have been proposed by Becke (B88) [36], 

Perdew-Wang (PW86, PW91) [37, 38], and Perdew-Burke-Ernzerhof (PBE) [39].  The PBE 

functional has found wide use in modeling materials, especially within the transition metal 

system, which makes it suitable for modeling Zr-Ni alloy materials. 

 

2.3.7 Ground State Structure and Energy of Formation 

A known external potential fixes the locations of the atoms within a specific structure.  

The energy of the specific configuration of atoms is determined when the energy within the DFT 

framework reaches a minimum over the iterations of the electron distribution and its structure.  

In order to find the equilibrium ground state structure for a system of interest, a minimization 

routine, typically a quasi-Newtonian algorithm, is used to iterate over atomic positions in until a 

minimum energy, zero forces, and zero stresses are reached.  The relative stability of the ground 

state structures is defined by the energy of formation 

∆𝐻𝑓 =
𝐸(𝐴𝑛𝐵𝑚) −

𝑛
𝑙

𝐸(𝐴𝑙) −
𝑚
𝑘

𝐸(𝐵𝑘)

𝑛 + 𝑚
 , 

where Al and Bk are the constituent elemental compounds of the compound of interest AnBm.  Al 

and Bk, for example, may be of the forms body-centered cubic, face-centered cubic, hexagonal, 

etc, and l and k are the numbers of basis atoms in the respective unit cells. 
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2.4  Statistical Mechanics Model 

Intrinsic point defects within an ordered binary system AxB1-x with fixed temperature at 

zero pressure are described within a generalized grand canonical ensemble [21, 22, 40, 41].  The 

number of atoms NA and NB fluctuate as a function of the independent variables temperature, 

volume, and chemical potentials μA and μB.  The grand canonical potential is defined as 

𝐽 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 − 𝜇𝐴𝑁𝐴 − 𝜇𝐵𝑁𝐵 , 

where U is the internal energy, T is the temperature, S is the entropy, P is the pressure, and V is 

the volume. The equilibrium concentrations of each type of point defect are found by minimizing 

the grand canonical potential with respect to the concentration or particle number of each type of 

defect. For M total lattice sites in the system consisting of A atoms on the α sublattice (with Mα 

total α sublattice sites) and B atoms on the β sublattice (with Mβ total β sublattice sites), the total 

number of atoms are defined as 

𝑁𝐴 = 𝑀𝛼 − 𝑁𝐵
𝛼 − 𝑁𝑣

𝛼 + 𝑁𝐴
𝛽

 , 

𝑁𝐵 = 𝑀𝛽 − 𝑁𝐴
𝛽

− 𝑁𝑣
𝛽

+ 𝑁𝐵
𝛼  , 

where 𝑁𝑣
𝛼,𝛽

 is the number of vacancies on the respective sublattice, 𝑁𝐵
𝛼 is the number of anti-

sites on the α sublattice, and 𝑁𝐴
𝛽

is the number of anti-sites on the β sublattice.  Multiple α and β 

sublattices may exist depending on the number of equivalent atoms in the unit cell.  Each can 

have a different defect formation energy and should be accounted for similarly.  The internal 

energy is defined as 

𝑈 = 𝑀휀0 + 𝑁𝑣
𝛼휀𝑣

𝛼 + 𝑁𝑣
𝛽

휀𝑣
𝛽

+ 𝑁𝐵
𝛼휀𝐵

𝛼 + 𝑁𝐴
𝛽

휀𝐴
𝛽

 , 

where 휀0 is the energy per unit cell of the system and 휀𝑖
𝜈is the defect energy parameter for a 

defect of type i on a sublattice ν.  The defect energy parameters are calculated by DFT for a 

supercell of size N such that 
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휀0 =
𝑛

𝑁
𝐸(𝑁, 0) , 

휀𝑣
𝛼,𝛽

= 𝐸(𝑁 − 1, 1𝛼,𝛽) − 𝐸(𝑁, 0) , 

휀𝐴
𝛽

= 𝐸(𝑁, 𝐴𝛽) − 𝐸(𝑁, 0) , 

휀𝐵
𝛼 = 𝐸(𝑁, 𝐵𝛼) − 𝐸(𝑁, 0) ,  

where n is the number of basis atoms in the elementary unit cell, 𝐸(𝑁, 0) is the ground state 

energy of the supercell of size N with zero defects, 𝐸(𝑁 − 1, 1𝛼,𝛽) is the ground state energy of 

the supercell of size N – 1 with one vacancy on the respective sublattice, 𝐸(𝑁, 𝐴𝛽) is the ground 

state energy of the supercell of size N with one A atom on the β sublattice, and 𝐸(𝑁, 𝐵𝛼) is the 

ground state energy of the supercell of size N with one B atom on the α sublattice. The entropy is 

the statistical count of the configurations in the system (neglecting the formation entropy of the 

defects) given by 

𝑆 = 𝑘𝐵ln (
𝑀𝛼!

𝑁𝑣
𝛼! 𝑁𝐵

𝛼! (𝑀𝛼 − 𝑁𝑣
𝛼 − 𝑁𝐵

𝛼)!
∙

𝑀𝛽!

𝑁𝑣
𝛽

! 𝑁𝐴
𝛽

! (𝑀𝛽 − 𝑁𝑣
𝛽

− 𝑁𝐴
𝛽

)!
) . 

where kB is the Boltzmann constant.  Substituting the equations into the expression for the grand 

canonical potential and minimizing with respect to the particle numbers yields the equilibrium 

concentrations of the defects 

𝑐𝑣
𝛼 =

𝑁𝑣
𝛼

𝑀
=

𝑀𝛼

𝑀

𝑒−𝛽(𝜀𝑣
𝛼+𝜇𝐴+𝑃𝑣𝑣

𝛼)

1 + 𝑒−𝛽(𝜀𝑣
𝛼+𝜇𝐴+𝑃𝑣𝑣

𝛼) + 𝑒−𝛽(𝜀𝐵
𝛼+𝜇𝐴−𝜇𝐵+𝑃𝑣𝐵

𝛼)
 , 

𝑐𝐵
𝛼 =

𝑁𝐵
𝛼

𝑀
=

𝑀𝛼

𝑀

𝑒−𝛽(𝜀𝐵
𝛼+𝜇𝐴−𝜇𝐵+𝑃𝑣𝐵

𝛼)

1 + 𝑒−𝛽(𝜀𝑣
𝛼+𝜇𝐴+𝑃𝑣𝑣

𝛼) + 𝑒−𝛽(𝜀𝐵
𝛼+𝜇𝐴−𝜇𝐵+𝑃𝑣𝐵

𝛼)
 , 

𝑐𝑣
𝛽

=
𝑁𝑣

𝛽

𝑀
=

𝑀𝛽

𝑀

𝑒−𝛽(𝜀𝑣
𝛽

+𝜇𝐵+𝑃𝑣𝑣
𝛽

)

1 + 𝑒−𝛽(𝜀𝑣
𝛽

+𝜇𝐵+𝑃𝑣𝑣
𝛽

) + 𝑒−𝛽(𝜀𝐴
𝛽

+𝜇𝐵−𝜇𝐴+𝑃𝑣𝐴
𝛽

)
 , 
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𝑐𝐴
𝛽

=
𝑁𝐴

𝛽

𝑀
=

𝑀𝛽

𝑀

𝑒
−𝛽(𝜀𝐴

𝛽
+𝜇𝐵−𝜇𝐴+𝑃𝑣𝐴

𝛽
)

1 + 𝑒−𝛽(𝜀𝑣
𝛽

+𝜇𝐵+𝑃𝑣𝑣
𝛽

) + 𝑒−𝛽(𝜀𝐴
𝛽

+𝜇𝐵−𝜇𝐴+𝑃𝑣𝐴
𝛽

)
 . 

The chemical potentials can be obtained from the thermodynamic relations such that 

𝑁𝐴 =
𝜕𝐽

𝜕𝜇𝐴
 , 

𝑁𝐵 =
𝜕𝐽

𝜕𝜇𝐵
 , 

which gives the expression 

휀0 + 𝑃𝑣0 =
𝑀𝛼

𝑀
𝜇𝐴 +

𝑀𝛽

𝑀
𝜇𝐵 −

𝑀𝛼

𝑀
𝑘𝐵𝑇 ln (1 −

𝑀

𝑀𝛼
𝑐𝑣

𝛼 −
𝑀

𝑀𝛼
𝑐𝐵

𝛼)

−
𝑀𝛽

𝑀
𝑘𝐵𝑇 ln (1 −

𝑀

𝑀𝛽
𝑐𝑣

𝛽
−

𝑀

𝑀𝛽
𝑐𝐴

𝛽
) , 

and then imposing the restriction 

𝑁𝐴

𝑁𝐵
=

𝑀𝛼 − 𝑁𝐵
𝛼 − 𝑁𝑣

𝛼 + 𝑁𝐴
𝛽

𝑀𝛽 − 𝑁𝐴
𝛽

− 𝑁𝑣
𝛽

+ 𝑁𝐵
𝛼

=
𝑥

1 − 𝑥
 , 

in order to maintain the correct composition of the system. 

The effective formation energy of the atomic defects is defined as 

∆𝐻𝑖
𝜈 = −𝑘𝐵

𝜕𝑐𝑖
𝜈

𝜕 (
1
𝑇)

 , 

which is simplified as 

∆𝐻𝑖
𝜈 = 휀𝑖

𝜈 − 𝛿𝑖,𝐴𝜇𝐴 + 𝛿𝜈,𝐴𝜇𝐴 − 𝛿𝑖,𝐵𝜇𝐵 + 𝛿𝜈,𝐵𝜇𝐵 ,  

where 

∆𝐻𝑣
𝛼 = 휀𝑣

𝛼 + 𝜇𝐴 , 

∆𝐻𝑣
𝛽

= 휀𝑣
𝛽

+ 𝜇𝐵 , 

∆𝐻𝐵
𝛼 = 휀𝐵

𝛼 − 𝜇𝐵 + 𝜇𝐴 , 
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∆𝐻𝐴
𝛽

= 휀𝐴
𝛽

− 𝜇𝐴 + 𝜇𝐵 . 

It describes the energy required to overcome the barriers to the formations of defects while 

accounting for the same number of A and B atoms in the system [40].  It is dependent on 

temperature through the chemical potentials, as well as on the properties of the point defects 

within the system [41].  

A number of assumptions simplifies the system of equations in order to numerically 

calculate the defect concentrations for the binary system.  For systems at equilibrium volume, the 

pressure is taken to be zero.  The contributions from vibrational energy and formation entropy 

are neglected due to the difficulty in calculating these quantities using ab initio methods.  When 

defect concentrations are very small, the denominator in the concentration expressions can be 

approximated as unity. These assumptions can have a large effect on the interpretation of the 

effective formation energies if care is not taken. This method has been utilized in literature to 

study defects in a wide range of intermetallic compounds including FeAl, NiAl, NiAl3, and TiNi 

with good correlation to experiment [21, 40, 42-45]. 
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CHAPTER 3.  POINT DEFECT MODELS IN Zr7Ni10 AND Zr2Ni7 BINARY 

INTERMETALLIC COMPOUNDS 

Zr7Ni10 phase has an orthorhombic structure and sometimes occurs as a metastable 

tetragonal phase [6, 19, 46]. It was originally reported to have space group symmetry Aba2 [15, 

16] and has since been revised to have space group symmetry Cmca [17].  Its crystal structure is 

shown in Figure 2 below, rendered using VESTA graphical software [47].  It contains 68 atoms 

per unit cell (Z = 4) with experimental parameters a = 12.381 Å, b = 9.185 Å, and c = 9.221 Å 

[17]. The unit cell contains 4 equivalent Zr atoms in the 4a, 8d, 8e and 8f positions and 3 

equivalent Ni atoms in the 8f and 16g positions.   

 

Figure 2. Zr7Ni10 crystal structure 

 

Due to computational resources, we choose to investigate a combination of defects in one 

8d and one 8e position for the Zr sublattices and one 16g position for the Ni sublattices for a total 

of 6 defect structures.  The lowest energy of the sublattice defects was considered for the 



www.manaraa.com

19 

 

 

remaining equivalent sites.  It is possible that the other sites may have different defect energies, 

which can affect the results, which we analyze with a sensitivity analysis.  However, we lay the 

groundwork for theoretical analysis of point defects for the Zr7Ni10 and Zr2Ni7 systems with this 

work.  We also confirm computationally that Zr7Ni10 phase relaxes to an equilibrium structure 

with space group Cmca. 

Zr2Ni7 phase is monoclinic, and its crystal structure is shown in Figure 3 below.  It 

contains 36 atoms per unit cell (Z = 4) with experimental parameters a = 4.698 Å, b = 8.235 Å, c 

= 12.193 Å and β = 95.83° [48].  It contains 2 equivalent Zr atoms in the 4i positions and 4 

equivalent Ni atoms in the 4i and 8j positions.  Due to computational resources, we choose to 

investigate a combination of defects in one 4i position for Zr atoms and one 4i and one 8j 

position for Ni atoms for a total of 6 defect structures.  We assume that the remaining equivalent 

atoms have similar energies to the atoms with similar Wyckoff positions. 

 

Figure 3. Zr2Ni7 crystal structure 
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3.1 Computational Methods 

Electronic structure calculations were performed using the plane-wave-based density 

functional theory code implemented in Quantum Espresso [49] and ultra-soft pseudopotentials 

from the GBRV pseudopotential library [50]. The exchange-correlation potential applied the 

PBE version of the generalized gradient approximation [39]. The recommended plane-wave 

cutoff energy of 40 Ry and charge-density cutoff energy of 120 Ry allowed convergence within 

1×10-5 Ry/atom of the energy. A Methfessel-Paxton smearing width of 0.02 Ry with a 

Monkhorst-Pack k-point grid that yields 100-200 k-points also met convergence criteria with 

reasonable speed [51, 52].  Spin-polarization was not included in the calculations due to the large 

size of the systems. 

Cell structural optimizations for a given composition and structure were conducted by a 

variable cell relaxation calculation that minimizes forces and stresses within the cell. The cell is 

considered optimized when forces were below 1×10-3 Ry/Å, the minimum energy was converged 

to below 1×10-5 Ry/atom, and stresses converged within 0.5 kbar.   

Zr7Ni10 contains 68 atoms per unit cell.  A supercell was not constructed due to the 

inherent large size of the cell.  The structure with the space group Aba2 was evaluated for the 

calculation and allowed to relax.  Point defects involving select equivalent sites of the optimized 

structure were investigated.  Zr2Ni7 contains 36 atoms per unit cell, and a 2×1×1 supercell 

containing 72 atoms was constructed to reduce interactions of the defects in adjacent cells.  Point 

defects involving select equivalent sites were investigated.  Structures for ZrNi5, Zr8Ni21, and 

ZrNi were also calculated to provide tie lines for the formation energy diagrams. 

The statistical mechanics method for defects in ordered binary compounds was calculated 

using fsolve from the SciPy library for Python.  The defect concentrations and effective 
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formation energies were calculated at a reference temperature of 1000°C, a temperature near the 

melting points for the Zr7Ni10 and Zr2Ni7 systems.  When precision limitations were encountered 

in Python (typically at low temperature, which results in extremely low defect concentrations), 

the logarithmic terms containing defect concentration variables were analyzed and dropped when 

low concentration assumptions were valid. 

 

3.2 Theoretical Point Defects in Zr7Ni10 

DFT calculation of Zr7Ni10 phase in the space group Aba2 results in a relaxed structure 

having space group Cmca symmetry.  The calculated lattice parameters are shown in Table 1 

below with comparative lattice parameters from experiment. The lattice parameters show 

reasonable agreement with experiment, although the calculated structure appears to converge to a 

near tetragonal unit cell. The tetragonal phase is considered a metastable phase, and it is 

observed after hydrogenation of the alloy, particularly in Ni/MH battery negative electrodes [6, 

19, 46].  Defects in Zr7Ni10 may play an important role in facilitating the phase change, as well as 

in promoting diffusion kinetics for improved rate performance and access to hydrogen storage 

capacity. The DFT defect formation energies for Zr7Ni10 phase are calculated based on this 

optimized calculated structure. 

Table 1. Zr7Ni10 unit cell lattice parameters 

  

This 

Work 

Ref. 

[16] 

Ref. 

[17] 

S.G. Cmca Aba2 Cmca 

a (Å) 12.419 12.386 12.381 

b (Å) 9.179 9.156 9.185 

c (Å) 9.180 9.211 9.221 
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3.2.1 DFT Defect Formation Energies 

Ground state DFT formation energies (at T = 0K) for Zr7Ni10 phase and the theoretical 

Ni→Zr anti-site, Zr vacancy, Ni vacancy and Zr→Ni anti-site defects are plotted in Figure 4 

with the tie lines to the neighboring compounds Zr8Ni21 and ZrNi.  All of the defect energies at 

0K for the specific structures considered lie above the stoichiometric compound as well as above 

the tie lines, indicating energy is required for the defects to form, and that the defects are in 

competition with formation of phases or mixtures of phases.  There is a large difference between 

the Zr sublattice sites investigated.  This indicates that defects more preferentially form on the 8e 

sublattice than the 8d sublattice for Zr. 

 

 

Figure 4. Formation energies for Zr7Ni10 and its point defects with tie lines 

 

The model neglects temperature effects showing the effects of the heat of mixing, entropy, 

vibrational energy and defect interaction on the free energy of each of the possible phases, which 

is necessary for a more conclusive study of phase stability and solubility windows.  However, the 
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DFT formation energies indicate that out of the defects considered, the 8e Ni→Zr anti-site defect 

and the Ni vacancy defect are the most stable of the point defects for Zr7Ni10 phase.  But since 

Zr7Ni10 phase is an ordered, binary compound, a mixture of all point defects is necessarily 

generated in order to maintain the required stoichiometry, and this is addressed by the statistical 

mechanics model. 

 

3.2.2 Theoretical Effective Formation Energies 

The theoretical defect concentrations for Zr7Ni10 phase at 1000°C calculated using the 

defect energy parameters derived from DFT electronic structure calculations are plotted as 

functions of Zr-content for stoichiometric and theoretical off-stoichiometric compositions in 

Figure 5.  The solubility window for Zr7Ni10 phase is reported to be at most 41.4% at. Zr-content 

[19].  Concentrations of defects on each of the different site sublattices were generated and added 

together to give a total concentration for a defect on the atomic sublattice.  The A atoms 

represent Zr and the B atoms represent Ni in the statistical mechanics model, where 𝑐𝑣
𝛼 is the 

concentration of vacancies on the Zr sublattices, 𝑐𝑣
𝛽

 is the concentration of vacancies on the Ni 

sublattices, 𝑐𝐵
𝛼 is the concentration of total Ni→Zr anti-site defects, and 𝑐𝐵

𝛽
 is the concentration 

of total Zr→Ni anti-site defects. 
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Figure 5. Theoretical defect concentrations for Zr7Ni10 at 1000°C 

 

Stoichiometric Zr7Ni10 phase at 1000°C is dominated by Ni vacancies and Ni→Zr anti-

site defects at an approximately 2.4:1 ratio, indicating a defect structure possibly similar to a 

triple defect. Zr-rich compositions promote more defects on the Ni sublattices, with Ni vacancies 

outnumbering the Zr→Ni anti-site defects.  Ni-rich compositions theoretically would promote 

defects on the Zr sublattices. Ni→Zr anti-site defects dominate in the analysis, and while the 

concentration of Zr vacancies increases, it does not approach the concentrations of the other 

defects.  Each of the site lattices generated an effective formation energy, and a weighted 

average by the concentration of sites was used to calculate the theoretical effect formation 

energies of the atomic point defects.  The theoretical effective formation energies for the 

respective point defects at 1000°C are tabulated in Table 2 and show the relative ease for which 

the defects can form.  The effective formation energies for the defects are consistent with the 

defect concentration trends observed in Figure 5, with Ni vacancies showing the lowest effective 

formation energy at stoichiometry and on the Zr-rich side. 
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Table 2. Theoretical effective formation energies for point defects in Zr7Ni10 at 1000°C 

  

ΔHv
α 

(eV) 

ΔHv
β 

(eV) 

ΔHB
α 

(eV) 

ΔHA
β 

(eV) 

Ni-rich 2.39 1.09 0.52 2.11 

Stoich. 2.64 0.91 0.95 1.68 

Zr-rich 3.22 0.51 1.94 0.70 

 

3.3 Theoretical Point Defects in Zr2Ni7 

The DFT structure optimization calculation for Zr2Ni7 phase is consistent with the 

monoclinic C2/m symmetry and structure reported in literature.  The calculated lattice 

parameters are shown in Table 3 below with comparative lattice parameters from experiment. 

The lattice parameters show reasonable agreement with experiment. The DFT defect formation 

energies for Zr2Ni7 phase are calculated based on this optimized calculated structure. 

Table 3. Zr2Ni7 unit cell lattice parameters 

  

This 

Work 

Ref. 

[48] 

a (Å) 4.677 4.698 

b (Å) 8.239 8.235 

c (Å) 12.176 12.193 

β (°) 95.20 95.83 

 

3.3.1 DFT Formation Energies 

Ground state DFT formation energies for Zr2Ni7 phase and its theoretical Ni→Zr anti-site, 

Zr vacancy, Ni vacancy and Zr→Ni anti-site defects are plotted in Figure 6 with the tie lines to 

neighboring compounds ZrNi5 and Zr8Ni21. All defects energies at 0K lie above the 

stoichiometric compounds as well as the tie lines.  However, the Ni→Zr anti-site defect energy 

lies considerably higher than the stoichiometric compound than for the ZrNi5-Zr2Ni7 mixture tie 

line, indicating a possible shift in the dominating defects found in a theoretical Ni-rich off-

stoichiometric compound.  The Zr→Ni anti-site defect energy is the lowest of the defects for 
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Zr2Ni7 phase, followed by the Ni vacancy defect energy.  There is a small difference in defect 

energy between 4i and 8j sites for the Ni vacancy, but a much larger difference between the sites 

for the Zr→Ni anti-site defect.  In general, point defects appear to prefer to form on the 8j 

sublattices. 

 

Figure 6. Formation energies for Zr2Ni7 and its point defects with tie lines 

 

3.3.2 Theoretical Effective Formation Energies 

The theoretical defect concentrations for Zr2Ni7 phase at 1000°C are plotted as functions 

of Zr-content for stoichiometric and theoretical off-stoichiometric compositions in Figure 7.  

Stoichiometric Zr2Ni7 phase at 1000°C is dominated by Ni vacancies and Ni→Zr anti-site 

defects at an approximately 3:1 ratio of total vacancies to total anti-sites. Theoretical Zr-rich 

compositions promote more defects on the Ni sublattice, but in contrast to Zr-rich Zr7Ni10 phase, 

the Zr→Ni anti-site defects overtake the Ni vacancies.  Ni-rich compositions theoretically 

promote defects on the Zr sublattice, with Ni→Zr anti-site defects also dominating in this 
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theoretical Ni-rich phase.  Zr vacancies increase on the Ni-rich side, but again, the concentration 

does not approach the concentrations of the other defects.   

 

Figure 7. Theoretical defect concentrations for Zr2Ni7 at 1000°C 

 

The weighted theoretical effective formation energies for the respective point defects at 

1000°C are tabulated in Table 4 and define the relative ease for which the defects can form.  The 

effective formation energies for the defects are consistent with the defect concentration trends 

observed in Figure 7 with Ni vacancies showing the lowest effective formation energy at 

stoichiometry. 

Table 4. Theoretical effective formation energies for point defects in Zr2Ni7 at 1000°C 

  

ΔHv
α 

(eV) 

ΔHv
β 

(eV) 

ΔHB
α 

(eV) 

ΔHA
β 

(eV) 

Ni-rich 1.89 1.55 0.48 2.63 

Stoich. 2.59 1.36 1.37 1.73 

Zr-rich 3.45 1.11 2.48 0.63 
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3.4 Discussion 

Theoretical point defect concentrations and effective formation energies of the defects 

were calculated for Zr7Ni10 and Zr2Ni7 systems at 1000°C.  Experimentally, Zr7Ni10 shows a 

small solubility window on the Zr-rich side, and Zr2Ni7 has no solubility window.  The statistical 

mechanics model indicates that at stoichiometry, Zr7Ni10 phase tends to form Ni vacancies and 

Ni→Zr anti-site defects in a 2.4:1 ratio, while Zr2Ni7 possibly forms a more complicated 

complex of 3 Ni vacancies with 1 anti-site defect (Ni→Zr predominant by a ratio of 7:1) to 

maintain stoichiometry.  Zr-rich compositions show a dominance of Ni vacancies in Zr7Ni10 

phase, while Zr2Ni7 phase show a theoretical preference for Zr→Ni anti-site defects. Theoretical 

Ni-rich compositions show a preference for Ni→Zr anti-site defects for both phases.  In general, 

it is easier to form defects in Zr7Ni10 phase than Zr2Ni7 phase, due to the lower effective 

formation energies.  While the model neglects the effects of the heat of mixing, entropy, 

vibrational energy and defect interaction on the free energy of each of the possible phases that 

are needed to draw a more solid conclusion regarding the solubility windows of the two 

compounds, the DFT formation energies clearly show Zr7Ni10 phase to be more stable than 

Zr2Ni7 phase.  This observation indicates that it is more likely for defected Zr7Ni10 structures to 

form and to contribute to a window of solubility, which does not contradict with reported 

experimental literature. However, it is more difficult to discern Zr-rich favorability over Ni-rich 

favorability in Zr7Ni10 phase computationally with the current study. 

 

3.4.1 Sensitivity Analysis 

A sensitivity analysis is performed to understand the limits of the model given the 

assumptions used in this study. Deviations in energy between defects on particular Wyckoff 



www.manaraa.com

29 

 

 

positions can range from 0.001 eV to 1.0 eV. Because multiple sites are taken into account in the 

statistical mechanics model, this tempers the deviations in the defect concentrations and effective 

defect formation energies to a degree. Deviations on the order of 0.001 eV appear to have 

negligible effect on the concentrations and effective formation energies.  Deviations on the order 

of 1.0 eV showing higher energies also have negligible effect; however, when the deviations 

show lower energies, they can shift effective formation energies lower by 0.7 eV.  This can have 

a dramatic effect on the defect models and on the conclusions that are drawn from them.  While 

preliminary calculations indicate that the neglected 4a Zr and 8f Zr sites do not have large energy 

deviations from 8e Zr sites, the possibility of lower energy sites and their effect on the formation 

of defects must be kept in mind when analyzing the defect models presented in this study. 

 

3.4.2 Hydrogen-Assisted Phase Transition in Zr7Ni10 

Experimentally, orthorhombic Zr7Ni10 phase undergoes phase transformation after 

hydrogenation to form the metastable tetragonal phase [6, 19, 46].  DFT cell optimization of a 

perfect unit cell yields a near tetragonal structure to have the lowest energy at the ground state (0 

K, 0 bar); however, cell optimizations of defected structures yield more orthorhombic phases, as 

shown in Table 5.  While a perfect tetragonal structure shows lower internal energy compared to 

defected structures, entropic contributions to the free energy likely raises the free energy of the 

tetragonal structure (higher symmetry yields higher entropy) above the free energy of the 

defected orthorhombic structure.  This suggests that the volume expansion and contraction 

associated with hydrogenation can change the nature of the defects in Zr7Ni10 to access to the 

metastable tetragonal phase in experiment, and this can have implications in the design of 

hydrogen storage alloys. 
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Table 5. Lattice parameters of Zr7Ni10 and defected structures calculated by DFT 

  

Perfect 

Crystal 

 

Zr 

Vac. 

(8d) 

Zr 

Vac. 

(8e) 

Ni→Zr 

(8d) 

Ni→Zr 

(8e) 

Ni 

Vac. 

(16g) 

Zr→Ni 

(16g) 

a (Å) 12.418 12.441 12.335 12.416 12.365 12.376 12.456 

b (Å) 9.179 9.136 9.142 9.133 9.135 9.167 9.205 

c (Å) 9.180 9.135 9.154 9.138 9.152 9.170 9.234 

 

Comparison of the defected lattice parameters to orthorhombic lattice parameters from 

experiment suggests that the calculated lattice parameters have a slight over-prediction in a and 

slight under-prediction in c. Ni vacancies and Ni→Zr anti-sites appear to help shrink the unit cell, 

particularly in the a direction. Zr→Ni anti-site defects, which is calculated to appear in small 

quantities at stoichiometry, help expand the unit cell, particularly in the c direction. 

 

3.4.3 Zr7Ni10 and Zr2Ni7 in Nickel-Metal Hydride Batteries 

Secondary phases such as Zr7Ni10 and Zr2Ni7 have been shown to enhance 

electrochemical activity in Laves phase-based Ni/MH battery negative electrodes [3, 4, 6, 7].  As 

pure phases, Zr7Ni10 shows good hydrogen storage capability, but has deficiencies in reversibility 

and kinetics, while Zr2Ni7 shows smaller hydrogen storage capability, but has excellent 

reversibility and kinetics [6, 8, 53].   The relative stability of the compounds and the types of 

point defects can have an effect on the transport properties [9].  For example, vacancies tend to 

act as hydrogen traps in α-Fe metals [54], which can affect hydrogen reversibility and diffusion 

rates.  While both Zr7Ni10 and Zr2Ni7 phases show vacancies to be the predominant defect model 

in the two phases, vacancy defect concentrations in Zr2Ni7 phase at 1000°C is ~50 times smaller 

than in Zr7Ni10.  This can explain the low reversibility and low diffusion rates in Zr7Ni10 

compared to Zr2Ni7. 
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While there is a small solubility window for Zr-rich Zr7Ni10 compounds, modifiers can be 

added to the composition to engineer the properties of the alloys for better electrochemical 

performance.  Cu is soluble up to 6% at. in Zr7Ni10 [16], and Ti up to 15% at. has been shown to 

improve the diffusion and high-rate dischargeability without sacrificing capacity [6].  Modifiers 

have a role in changing the nature of the defects in materials, which can have a consequential 

effect on electrochemical performance.  Small amounts of Nd in multi-element AB2 MH alloys, 

promote the formation of Zr-Ni phases, showing A/B stoichiometry of up to 0.74 (42.5% at. A 

elements), while improving the HRD and low-temperature characteristics [55]. It would be of 

interest to see how Ti and other modifiers change the nature of the defects in Zr7Ni10 using the 

presented computational defect models and whether it confirms lowering the concentrations of 

vacancy defects.  Also of interest are modifiers that promote Zr→Ni anti-site defects, which 

would expand the unit cell and possibly improve hydrogen storage capacity [56]. 

Defects also have an effect on the mechanical properties of the alloys (mainly hardness 

and ductility), which can affect both the fabrication process and cycle stability against particle 

pulverization.  For example, off-stoichiometric anti-site defects have been shown to improve the 

hardness of Laves phase alloys [11].  The anti-site defects lower the atomic packing factor to 

enhance deformability and may also have an effect on the cycling capability in Zr7Ni10.  Zr7Ni10 

with higher concentrations of vacancy defects shows high hysteresis in gaseous phase pressure-

concentration-temperature analysis [53], which is correlated to poorer cycle life [57], whereas 

Zr2Ni7 with lower concentrations of vacancies shows no hysteresis.  Further understanding of the 

defects that occur in Ni/MH battery materials allows researchers to better engineering their 

properties. 
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This study of Zr-Ni-based materials shows a consistent correlation between materials 

calculated to theoretically have higher concentrations of vacancy defects with the materials that 

demonstrate poorer absorption/desorption kinetics and hysteresis characteristics in 

electrochemical experiments.  These results are also consistent with the experimental studies that 

that quantify the effect that point defects have on these specific properties in other intermetallic 

compounds.  Constitutional point defects demonstrably add another dimension in which Ni/MH 

negative electrode active materials can be studied, as seen in the point defect studies in Laves 

phase AB2 materials [11, 14, 23, 24].  While the results of this study do not offer specific 

pathways to promote the formation of anti-site defects over vacancy defects in Ni/MH negative 

electrode active materials to improve their performance, it does suggest that the potential for 

increased disorder and complexity can further propagate synergetic effects that have long been 

observed in these materials.  Ternary alloy defect models can also be built on this binary model 

to look at the effect of a modifier in AxB1-x phases, such as Ti in Zr7Ni10 phase [6], and that may 

offer suggestions for modifiers that could promote anti-site defects.     

 

3.5 Conclusion  

Defect models for Zr7Ni10 and Zr2Ni7 intermetallic phases were calculated from first-

principles using DFT and statistical mechanics to understand the possible roles that point defects 

have on the performance of Zr-Ni based active negative electrode materials in Ni/MH batteries.  

DFT calculations confirm that Zr7Ni10 phase structure has space group Cmca symmetry in the 

ground state.  DFT formation energies show that the defect structures investigated have higher 

energies than the perfectly crystalline structures. The defect structures also lie higher in energy 

than the tie lines to neighboring structures.  The statistical mechanics model at 1000°C indicates 
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that at stoichiometry, Zr7Ni10 phase tends to form Ni vacancies and Ni→Zr anti-site defects in a 

2.4:1 ratio, while Zr2Ni7 possibly forms a more complicated complex of 3 Ni vacancies with 1 

anti-site defect (Ni→Zr predominant by a ratio of 7:1) to maintain stoichiometry. Zr vacancies 

appear almost negligible in both Zr7Ni10 and Zr2Ni7 compounds.  In general, it is easier to form 

defects in Zr7Ni10 phase than Zr2Ni7 phase, due to the lower effective formation energies, which 

may give an indication to why there is a solubility window for Zr7Ni10 phase but not for Zr2Ni7 

phase. The dominance of Ni vacancy defects calculated for stoichiometric and Zr-rich Zr7Ni10 

phase and the propensity for vacancies to trap hydrogen also supports the poor diffusion behavior 

observed experimentally.  Modifiers to promote anti-site defects over vacancy defects may result 

in better transport properties as well as cycling behavior, and would be of interest for future work.  

First, more resources to remove the limiting assumptions in the point defect models would need 

to be explored, but the point defect models in this work offer a starting point to better understand 

the constitutional defects in Ni/MH battery materials, particularly in Zr7Ni10 and Zr2Ni7 phases, 

enabling researchers to engineer better and more robust batteries. 
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ABSTRACT 

FIRST-PRINCIPLES POINT DEFECT MODELS IN Zr7Ni10 AND Zr2Ni7 BINARY 

INTERMETALLIC COMPOUNDS AND THEIR IMPLICATIONS IN NICKEL-METAL 

HYDRIDE BATTERIES 

by 

DIANA F. WONG 

August 2015 

Advisor: Dr. K.Y. Simon Ng 

Major: Chemical Engineering 

Degree: Master of Science 

Zr-Ni-based alloys as nickel-metal hydride battery anode materials offer low-cost, 

flexible and tunable battery performance.  Zr7Ni10 is an important secondary phase found in 

multi-phased AB2 Laves-phase-based metal hydride alloys, and the synergetic effect between the 

Zr-Ni and the Laves phases allows access to the high hydrogen storage of the Zr-Ni phases 

despite the lower absorption/desorption kinetics. Zr7Ni10 displays a small solubility window for 

Zr-rich compositions, while Zr2Ni7, with no solubility window, shows poor capacity with good 

kinetics.  Stability of point defects within the crystal structure allows Zr7Ni10 to maintain the 

same structure at off-stoichiometric compositions, thus it is theorized that defects may play a role 

in the difference between the electrochemical behaviors in Zr7Ni10 and Zr2Ni7. Defect models in 

Zr7Ni10 and Zr2Ni7 compounds computed using a combination of density functional theory and 

statistical mechanics offer a starting point for understanding the possible roles that point defects 

have on the performance of Zr-Ni based active negative electrode materials in Ni/MH batteries.  

Theoretical vacancy and anti-site defect formation energies are calculated and reported for Zr-

rich, Ni-rich, and stoichiometric compounds of Zr7Ni10 and Zr2Ni7, and the implications of the 
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defect models on nickel-metal hydride negative electrode active material design and performance 

are discussed. 
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